- Syntex (1973). P21 Diffractometer Control Software. Syntex Analytical Instruments, Cupertino, California, USA.
- Vrábel, V., Garaj, J. & Kutschabsky, L. (1979). Acta Cryst. B35, 357-360.
- Williams, R. J., Larson, A. C. & Cromer, D. T. (1972). Acta Cryst. B28, 858-864.

sites of space group C2/m, the magnetic moments in the antiferromagnetic ground states are aligned parallel to [100] for the 4*i* site and to [010] for the 4*h* site in α -FeMoO₄, but parallel to [001] for both sites in α -CoMoO₄. Therefore, highly competing interactions with respect to the orientation of the magnetic moments are expected for the mixed compositions.

Acta Cryst. (1999). C55, 1383-1384

A mixed transition metal molybdate, β -(Co_{0.7}Fe_{0.3})MoO₄

HELMUT EHRENBERG, INGRID SVOBODA, MARC WIESMANN AND HANS WEITZEL

Strukturforschung, FB Materialwissenschaft, Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany. E-mail: helmut@steno.st.mw.tu-darmstadt.de

(Received 19 March 1999; accepted 7 June 1999)

Abstract

The high-temperature modification of the title mixed compound, cobalt iron molybdate, a transition metal molybdate of type β -AMoO₄, with $A = (Co_{0.7}Fe_{0.3})$, is metastable at room temperature. The distribution of Fe and Co is different for the two non-equivalent A sites: only 18 (9)% of all atoms on the 4*i* site are Fe, compared with 43 (9)% on the 4*h* site.

Comment

For the transition metal molybdates $AMoO_4$, with A =Fe or Co, three different modifications were reported by Sleight & Chamberland (1968), *i.e.* the high-pressure form AMoO₄-II, the standard modification α -AMoO₄ and the high-temperature phase β -AMoO₄. The reversible phase transition between the α - and β -phases takes place at about 673 K for A = Fe and at about 773 K for A = Co. Motivated by the very different magnetic behaviour of α -FeMoO₄ and α -CoMoO₄ (Ehrenberg et al., 1994), we have studied compounds of mixed composition. For the Co:Fe ratio of 0.7:0.3, we have obtained the title β -modification at room temperature, which is at least metastable under ambient conditions. The crystal structure of this β -modification is only known from α -MnMoO₄ (Abrahams & Reddy, 1965). It has not been refined for β -FeMoO₄ and β -CoMoO₄.

The Co:Fe ratio is different for the two non-equivalent A sites: 18 (9)% of all atoms on the 4*i* site are Fe, compared with 43 (9)% on the 4*h* site. This is of importance for the magnetic properties of the mixed compounds. In the case of the α -phases, in which the transition metal ions also occupy the 4*h* and 4*i*

Fig. 1. The crystal structure of the title β -AMoO₄ compound. All cations within one unit cell are shown with their complete coordination sphere, *i.e.* [MoO₄] tetrahedra and [AO₆] octahedra. For brevity, the mixed A sites are labelled Co1 and Co2. Displacement ellipsoids are shown at the 50% probability level.

Experimental

The title compound was prepared by subsolidus reaction of a mixture of MoO_3 (99.99%, Aldrich), Co_3O_4 (99.99%, Aldrich), CoO (99.9%, Aldrich), Fe₂O₃ (99.98%, Aldrich) and Fe (99.9%, Aldrich) in the ratio 1:0.175:0.175:0.1:0.1. The reactants were mixed intimately in an agate mortar under acetone, sealed in an evacuated silica tube and heated to 1273 K at a rate of 300 K h⁻¹. After 10 h, the reaction product was cooled down, first at a rate of 40 K h⁻¹ to 873 K, then at a rate of 15 K h⁻¹ to 723 K and finally to room temperature at a rate of 18 K h⁻¹.

Crystal data

$Co_{0.7}Fe_{0.3}MoO_4$	Mo $K\alpha$ radiation
$M_r = 217.54$	$\lambda = 0.71093 \text{ Å}$
Monoclinic	Cell parameters from 25
C2/m	reflections
a = 10.221 (3) Å	$\theta = 6.04 - 16.69^{\circ}$
b = 9.275 (3) Å	$\mu = 8.79 \text{ mm}^{-1}$
c = 7.024 (2) Å	T = 299 (2) K
$\beta = 106.87 (2)^{\circ}$	Prism
$V = 637.2(3) \text{ Å}^3$	0.075 \times 0.050 \times 0.037 mm
Z = 8	Dark brown
$D_x = 4.546 \text{ Mg m}^{-3}$	
D_m not measured	

Co _{0.7} Fe _{0.}	3MoO4
------------------------------------	-------

Data collection

Nonius CAD-4 diffractom-	$R_{\rm int} = 0.052$
eter	$\theta_{\rm max} = 35^{\circ}$
$\omega/2\theta$ scans	$h = -16 \rightarrow 16$
Absorption correction:	$k = 0 \rightarrow 14$
ψ scan (North <i>et al.</i> ,	$l = -11 \rightarrow 11$
1968)	3 standard reflections
$T_{\rm min} = 0.494, T_{\rm max} = 0.667$	frequency: 120 min
2928 measured reflections	intensity decay: 2.0%
1469 independent reflections	

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 2.168 {\rm e} {\rm \AA}^{-3}$
$R[F^2 > 2\sigma(F^2)] = 0.037$	(at 0.62 Å from Mo2)
$wR(F^2) = 0.095$	$\Delta \rho_{\rm min} = -1.759 {\rm e} {\rm \AA}^{-3}$
S = 1.135	(at 0.66 Å from Mo1)
1469 reflections	Extinction correction:
65 parameters	SHELXL93 (Sheldrick,
$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2]$	1993)
+ 2.6794 <i>P</i>]	Extinction coefficient:
where $P = (F_o^2 + 2F_c^2)/3$	0.0006 (3)
$(\Delta/\sigma)_{\rm max} < 0.001$	Scattering factors from
	International Tables for
	Crystallography (Vol. C

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

77 /1	12.1.1.1.	
1/ 1	/ 112 2.	112002
$O_{P0} = VI$		10 u u u.u

	- 1	.,,	• ,	
	x	у	z	U_{eq}
Mol	0.27128 (5)	0	0.40442 (8)	0.00776 (13)
Mo2	1/2	0.24850 (6)	0	0.00722 (13)
Co1†	1/2	0.32151 (10)	1/2	0.0080(2)
Fel‡	1/2	0.32151 (10)	1/2	0.0080 (2)
Co2§	0.19949 (9)	0	-0.14440 (13)	0.0077 (2)
Fe2¶	0.19949 (9)	0	-0.14440 (13)	0.0077 (2)
01	0.3662 (4)	0.1562 (5)	0.4720 (7)	0.0234 (8)
02	0.1415 (5)	0	0.5393 (7)	0.0090 (8)
O3	0.4576 (3)	0.3472 (4)	0.1959 (5)	0.0109 (6)
O4	0.3577 (4)	0.1440 (4)	-0.1093 (6)	0.0187 (7)
O5	0.2016 (6)	0	0.1458 (8)	0.0230(13)

† Site occupancy = 0.57 (9). ‡ Site occupancy = 0.43 (9). § Site occupancy = 0.82 (9). ¶ Site occupancy = 0.18 (9).

Table 2. Selected bond lengths (Å)

Mo1-O1	1.731 (4)	Col-O3 ⁿⁱ	2.066 (3)
Mol—Oli	1.731 (4)	Co1-03	2.066 (3)
Mo105	1.748 (6)	Col-O2 ^{iv}	2.163 (3)
Mol-O2	1.841 (5)	Col-O2 ^v	2.163 (3)
Mo204	1.731 (4)	Co2—O5	2.032 (6)
Mo2—O4 ⁱⁱ	1.731 (4)	Co2	2.057 (4)
Mo2—O3	1.807 (3)	Co2O4 ⁱ	2.057 (4)
Mo2—O3 ⁱⁱ	1.807 (3)	Co2-O3 ^{vi}	2.093 (4)
Co1—O1	2.026 (4)	Co2—O3 ^{vin}	2.093 (4)
Co1—O1 ⁱⁱⁱ	2.026 (4)	Co2—O2 ^{vm}	2.126 (5)
~ .			

Symmetry codes: (i) x, -y, z; (ii) 1 - x, y, -z; (iii) 1 - x, y, 1 - z; (iv) $\frac{1}{2} + x, \frac{1}{2} + y, z$; (v) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (vi) $\frac{1}{2} - x, y - \frac{1}{2}, -z$; (vii) $\frac{1}{2} - x, \frac{1}{2} - y, -z$; (viii) x, y, z - 1.

The occupancy factors for Co and Fe were refined as leastsquares parameters with the sum for each site constrained to be 1, but without constraints for the overall Co:Fe ratio.

Data collection: CAD-4 Diffractometer Control Software (Nonius, 1993). Cell refinement: CAD-4 Diffractometer Control Software. Data reduction: X-RED (Stoe & Cie, 1996). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Software used to prepare material for publication: *SHELXL*93.

Financial support from the Deutsche Forschungsgemeinschaft (grant No. WE1542/3-2) is gratefully acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1241). Services for accessing these data are described at the back of the journal.

References

- Abrahams, S. C. & Reddy, J. M. (1965). J. Chem. Phys. 43, 2533-2543.
- Ehrenberg, H., Wltschek, G., Trouw, F., Kroener, T., Weitzel, H. & Fuess, H. (1994). J. Magn. Magn. Mater. 135, 355-360.
- Nonius (1993). CAD-4 Diffractometer Control Software. Nonius GmbH, Solingen, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Sleight, A. W. & Chamberland, B. L. (1968). Inorg. Chem. 7, 1672– 1675.
- Stoe & Cie (1996). X-RED. Data Reduction Program. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 1384-1388

Potassium β'' -aluminogallate

KRISTINA EDSTRÖM

Inorganic Chemistry, The Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden. E-mail: kristina.edstrom@kemi.uu.se

(Received 13 November 1998; accepted 7 June 1999)

Abstract

The single-crystal structure of a non-stoichiometric potassium β'' -aluminogallate, K_{1.67}Mg_{0.67}Al_{8.58}Ga_{1.75}-O₁₇, has been determined by X-ray diffraction. The Ga atoms were found to occupy predominantly a tetrahedral 6c site (space group $R\bar{3}m$) in the middle of a spinel block of aluminium oxide with a site occupation of 51.6%. All the charge-stabilizing Mg²⁺ ions are found in the same site. Ga atoms are also found with a site occupation of 12.7% in the other tetrahedral 6c site, a site occupation of 7.6% in an octahedral 18*h* site and a site occupation of 0.9% in the second octahedral 3a site. The K⁺ ions lie distributed along edge-linked hexagonal pathways with